

College: Engineering

Department: Civil Engineering

Course Title: Highway Design

Course No: 0901405

Credit Hours: 3

Semester: Second

About The Course

Course Title: Highway Design Course No: 0901405 Credit Hours: 3

Class: 1 & 2

Lecture Room: 409

Obligatory/ Optional: Obligatory Text Book: Principles of Highway Engineering and Traffic Analysis. 2009. "Fourth Edition". Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. John Wiley & Sons, Inc.

The Instructor

Name: Abdulrazzaq Jawish Title: Assistant Professor Office Tel: Office No: 207

Office Hours: 12:30-15:00 Sun-Wed

E-maile: alkherret@yahoo.com

Course Description

This course covers: highway and road design concept, design objectives, design considerations, and design process. Design control and criteria: principles of route location road types, design vehicles, driver characteristics, design volume, and design speed. Highway alignment design: overall alignment, horizontal alignment, vertical alignment. Sight distance, stopping sight distance, decision sight distance, passing sight distance on two-lane road, criteria for measuring sight distance. Combination curves. Intersection alignment and interchanges

Course Objectives

To highlight the fundamental and mathematical concepts of highway geometric design and route location, to familiarize students with design and layout of horizontal and vertical curves, to design intersections and overcome special curve problems, and to attain superelevations and sight distances.

Learning Outcome

After successfully completing this course, the students should be able to :

- 1. understand the basic principles of highway design geometry and route survey.
- 2. design and layout horizontal and vertical alignments.
- 3. design intersections and overcome special problems.
- 4. attain superelevation and sight distance
- 5. design and layout of composite, compound, simple, reverse, and vertical curves.
- 6. deal with geometrical problems, settingout and layout.
- 7. know elements of design.

Course Outline and Time schedule

Week	Course Outline		
First week	Introduction: Text Book, References, and Outlines		
	Design Controls and Criteria		
2 nd week	Sight Distances: Stopping Sight Distance (SSD), Passing Sight Distance (PSD), and Decisions Sight Distance (DSD).		
	Sight Distances: Numerical Examples		
3 rd week	Horizontal Alignment: Highway Route.		
	Horizontal Alignment: Types of Curves.		
4 th week	Horizontal Alignment: Elements of Circular Curve (Simple Curve)- Part I		
	Horizontal Alignment: Elements of Circular Curve (Simple Curve)- Part II		
5 th week	Horizontal Alignment: Numerical Examples		
	Horizontal Alignment: Numerical Examples		
6 th week	First Exam		
	Horizontal Alignment: Transition Curve		
7 th week	Horizontal Alignment: Compound Curve a Reverse Curve		
	Horizontal Alignment: Numerical Examples		
8 th week	Horizontal Alignment: Widening of Pavement on Horizontal Curve		
	Horizontal Alignment: Sight Distance on		
	Horizontal Curves		
9 th week	Horizontal Alignment: Balance Condition (Balance		
	Horizontal Alignment: Adequate Sight Distance		
10 th week	Horizontal Alignment: Numerical Examples		
	Horizontal Alignment: Numerical Examples		

11 th week	Second Exam		
	Horizontal Alignment: Superelevation		
12 th week	Vertical Alignment: Design of Crest Vertical Curve		
	Vertical Alignment: Design of Sag Vertical Curve		
13 th week	Vertical Alignment: Numerical Examples		
	Vertical Alignment: Numerical Examples		
14 th week	Intersections: Intersection Design Elements		
	Intersections: Intersection Examples		
15 th week	Final Exam		

Presentation methods and techniques

Methods of teaching varied according to the type of text, student and situation. The following techniques are usually used:

1- Lecturing with active participations.

Involve the civil engineering students in asking some questions related to the target topic of the course.

2- Problem solving.

Encourage the students to solve the given assignments and submit them at the definite time,

3- Cooperative learning.

By enhancing the students studying in groups .

4- Discussion.

To discuss the results and the answers of the target problems.

5- Learning by activities.

To encourage the students to some group activity.

6- Connecting students with different sources of information.

Sources of information and Instructional Aids

Power Point

Using weight board.

Assessment Strategy and its tools

The assigned syllabus is assessed and evaluated Through: feed back and the skills that are acquired by the students The tools:

Formal (stage) evaluation

a)	Class Participation	10%
b)	Group activity and Quizzes	10%
c)	1st Exam	20%
d)	2nd Exam	20%

Tool & Evaluation

Tests and quizzes are permanent tools & assessment, in addition to the activity file which contains curricular and the co-curricular activities, research, report papers and the active participation of the student in the lecture.

The following table clarifies the organization of the assessment schedule:

Test	Date	Grade
First Exam	24/3/2019	20%
2 nd Exam	5/5/2019	20%
Activities &	Students should be notified about	20%
Participation	their marks	
Final Exam		40%

Activities and Instructional Assignment

1- Practical assignments to achieve the syllabus objectives.

2- Group Activity and demonstrations.

Regulations to maintain the teaching-Learning Process in the Lecture:

- 1- Regular attendance.
- 2- Respect of commencement and ending of the lecture time.
- 3- Positive relationship between student and teacher.
- 4- Commitment to present assignments on time.
- 5- High commitment during the lecture to avoid any kind of disturbance and distortion.
- 6- Allowed Absence percentages is (15%).

Internet websites

1. https://www.fhwa.dot.gov/

References :

- 1. AASHTO: A Policy on Geometric Design of Highways and Streets, 6th Edition (2011).
- 2. Traffic and Highway Engineering. 2009. Nicholas J. Garber and Lester A. Hoel. Fourth Edition. University of Virginia.

Syllabus Classification

Objectives	Learning outcome	Assessment tools	
	-		

• Introduction to the design controls and criteria used in different stages of roads design.	To produce student in civil engineering to be familiar with concept and procedure of road design.	Power point and weight board.
• Sight Distances	To make the student familiar with the types of sight distances and how to calculate them	By using solved problems. Power point and weight board.
• Horizontal Alignment	To make the student to have capability in determining: - elements of horizontal curve - sight distance on horizontal curves - superelevation rate and to enable the student to design horizontal curves and achieve the condition of balance and condition of vision	By using solved problems. Power point and weight board.
• Vertical Alignment	To enable the student to design vertical curves and to make the student to have capability in determining: - elements of vertical curve - sight distance on vertical curves	By using solved problems. Power point and weight board.
• Intersections	To make the student familiar with the types of intersections and calculate the different elements of intersections	By using solved problems. Power point and weight board.